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INTRODUCTION

REDUCED LEVELS OF ALERTNESS AND DEGRADED 
COGNITIVE PERFORMANCE DUE TO SLEEP LOSS AND 
NIGHT WORK ARE A CONCERN IN MANY OPERATIONAL 

settings, such as transportation, health care, emergency response, 
space flight, and the military. Biomathematical models of fatigue 
and performance may be useful to help predict performance im-
pairment resulting from sleep loss.1 As such, biomathematical 
models may be seen as fatigue risk management tools, supporting 
the anticipation and prevention of high-risk situations, the im-
plementation of safe and productive work schedules, and/or the 
timely delivery of fatigue countermeasures. 

In the 2002 “Fatigue and Performance Modeling Workshop” 
(Seattle, Washington), a number of biomathematical models were 
discussed and evaluated.2,3 In the proceedings of that workshop, 
scientists and stakeholders alike pointed out that to be useful and 
reliable in operational settings, performance models must be able 
to deal with inter-individual differences in performance impairment 
from sleep loss.3–5 Laboratory experiments have revealed that these 
inter-individual differences are substantial, and that they represent 
trait vulnerability.6 Thus, inter-individual differences are important 
determinants of sleep-deprived performance7 and should be cap-
tured by models deployed in operational scenarios.8

Performance models can be made to account for inter-indi-
vidual differences by first assessing every subject’s individual 
response to sleep deprivation, and then adjusting the model pa-
rameters to match each subject’s specific response. In most opera-
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ably when initial conditions are uncertain, and do not yield statistically valid 
estimates of prediction accuracy. These limitations diminish their usefulness 
for predicting the performance of individuals in operational environments. To 
overcome these 3 limitations, a novel modeling approach was developed, 
based on the expansion of a statistical technique called Bayesian forecast-
ing. The expanded Bayesian forecasting procedure was implemented in the 
two-process model of sleep regulation, which has been used to predict per-
formance on the basis of the combination of a sleep homeostatic process 
and a circadian process. Employing the two-process model with the Bayes-
ian forecasting procedure to predict performance for individual subjects in 
the face of unknown traits and uncertain states entailed subject-specific 
optimization of 3 trait parameters (homeostatic build-up rate, circadian am-
plitude, and basal performance level) and 2 initial state parameters (initial 
homeostatic state and circadian phase angle). Prior information about the 
distribution of the trait parameters in the population at large was extracted 
from psychomotor vigilance test (PVT) performance measurements in 10 
subjects who had participated in a laboratory experiment with 88 h of total 
sleep deprivation. The PVT performance data of 3 additional subjects in 
this experiment were set aside beforehand for use in prospective computer 
simulations. The simulations involved updating the subject-specific model 
parameters every time the next performance measurement became avail-

able, and then predicting performance 24 h ahead. Comparison of the pre-
dictions to the subjects’ actual data revealed that as more data became 
available for the individuals at hand, the performance predictions became 
increasingly more accurate and had progressively smaller 95% confidence 
intervals, as the model parameters converged efficiently to those that best 
characterized each individual. Even when more challenging simulations 
were run (mimicking a change in the initial homeostatic state; simulating 
the data to be sparse), the predictions were still considerably more accurate 
than would have been achieved by the two-process model alone. Although 
the work described here is still limited to periods of consolidated wakeful-
ness with stable circadian rhythms, the results obtained thus far indicate 
that the Bayesian forecasting procedure can successfully overcome some 
of the major outstanding challenges for biomathematical prediction of cogni-
tive performance in operational settings.
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tional environments, however, assessing everyone’s response to 
sleep deprivation is not practical or feasible. It is a problem, there-
fore, that none of the currently available biomathematical models 
of performance can handle inter-individual differences unless the 
individuals are characterized in advance.

One procedure to overcome this limitation was recently demon-
strated by Olofsen et al9: Bayes posterior distribution estimation, 
also known as Bayesian forecasting. This approach is grounded in 
Bayesian statistics, and as such it makes use of the advance char-
acterization of the inter-individual variability in the population 
as well, for instance by studying performance changes over time 
during a sleep deprivation experiment. However, this can be done 
in a representative sample drawn from that population—it is not 
necessary to include the specific individuals for whom the bio-
mathematical model will ultimately be used. Modern statistical 
techniques referred to as mixed-effects modeling10 allow the data 
from the studied sample to be separated into consistent changes 
over time, systematic between-subjects variance (i.e., trait-like 
variability) and residual within-subjects variance (i.e., error vari-
ance).9,11 This yields information about the prior probability that 
any given level of impairment would be observed at a specific 
time point in a person randomly drawn from the population at 
large. Importantly, it also produces probability estimates of the 
contributions to that impairment level from the person’s trait char-
acteristics on the one hand, and from error variance (e.g., random 
short-term variations in alertness) on the other hand. 

To illustrate this with an example, consider a population of 
transportation shift workers, whose responses to sleep loss could 
be characterized by subjecting a representative sample of them 
to sleep deprivation. By repeatedly measuring each subject’s per-
formance during the sleep deprivation period, and subsequently 
analyzing the collective measurement data with mixed-effects 
modeling, the pattern of consistent changes over time, the be-
tween-subjects variance, and the within-subjects variance for 
performance impairment due to sleep loss could be assessed for 
this population. For the sake of argument, let’s assume that the 
primary performance assay in the sleep deprivation experiment 
was a choice reaction time task. Let’s say that the group-average 
response to sleep loss as measured at midnight, expressed rela-
tive to baseline, was an increase of 6 in the number of response 
errors. Because of trait inter-individual differences as well as ran-
dom fluctuations, there may be some individual in the population 
whose response to sleep loss at midnight would show an increase 
of 11 errors relative to baseline, i.e., 5 additional errors compared 
to the group average. Using the between-subjects variance and 
within-subjects variance as assessed for the representative sample, 
a statement could be made about the probability of observing such 
a response to sleep loss. Moreover, it could be estimated to what 
extent this would likely be caused by trait vulnerability to sleep 
loss, and to what extent a random fluctuation would likely have 
contributed. For instance, if the between-subjects variance were 
somewhat larger than the within-subjects variance in this popula-
tion, then further calculations might show that the individual’s 
trait characteristics most probably led to 3 additional errors in the 
response to sleep loss (as compared to the group average), and 
that random variability most probably contributed the remaining 
2 additional errors observed at midnight. 

Thus, even if nothing is a priori known about a given person, 
it is possible to acquire probability-based information regarding 
that person’s performance during sleep deprivation—owing to first 

having studied the inter-individual differences in a sample of the 
population to which the person belongs. The Bayesian forecast-
ing procedure can use this information to optimize the parameters 
of a biomathematical model of performance for any individual 
of interest. Initially, the model parameters would be set to those 
that would best describe the average person in the population, and 
model predictions for the individual’s performance would be based 
on this population-average version of the model. This makes sense, 
for if nothing is as yet known about the individual, the probability 
is greatest that the individual’s response is approximately average. 
However, if it is possible to take one or more measurements of the 
individual’s performance, then the likely contribution of his or her 
actual trait characteristics to the observed performance could be 
estimated, as outlined above. Using Bayesian probability statistics, 
this trait information can be utilized to optimize the model param-
eters for the individual at hand.9 In this manner, Bayesian forecast-
ing allows a biomathematical model to account for inter-individual 
differences, even when performance predictions are applied to in-
dividuals not studied beforehand.

This paper deals with implementation of the Bayesian fore-
casting procedure for biomathematical modeling of performance, 
but also extends this effort to simultaneously account for subject-
specific states. The latter issue has been largely overlooked in the 
published literature, but is no less important in operational set-
tings. For example, the sleep history of people reporting for work 
is typically undocumented, and therefore individuals’ initial sleep 
homeostatic state may be a priori unknown. Hence, to be truly 
useful and reliable in operational settings, performance models 
must also be able to deal with this initial state uncertainty. It will 
be shown that this matter can be approached with the Bayesian 
forecasting procedure as well. 

Performance Prediction with the Two-Process Model

To develop a tool for biomathematical model prediction of in-
dividual subjects’ performance in the face of a priori unknown in-
ter-individual differences in traits as well as uncertain states, the 
seminal two-process model of sleep regulation12,13 will be used as 
a model platform. The two-process model postulates 2 primary 
sleep/wake regulatory processes: a sinusoidal circadian process 
and a saturating exponential homeostatic process. 

The equation for the circadian process C is a closed-form equa-
tion of the form

1.  C(t) = ∑
k
 ak sin(2 k π (t – φ) / τ),

where t denotes clock time (in hours, relative to midnight), φ is 
a parameter for the circadian phase angle (i.e., the timing of the 
circadian process relative to clock time), and τ is a parameter for 
the circadian period. Since circadian phase shifts and temporary 
changes in the circadian period are mathematically equivalent,14 
τ is redundant with φ in most operational environments, and will 
therefore be fixed at τ = 24 h. The summation over the index 
k serves to allow for harmonics in the sinusoidal shape of the 
circadian process. For application of the two-process model for 
alertness prediction, k has been taken to go from 1 to 5, with the 
constants ak being fixed as a1 = 0.97, a2 = 0.22, a3 = 0.07, a4 = 
0.03, and a5 = 0.001.15

The equation for the homeostatic process S during wakefulness 
is a difference equation of the form
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2.  St = 1 – (1 – St–Δt) exp(–Δt / τr)

(S > 0), where t denotes (cumulative) clock time, Δt denotes the 
time step (of arbitrary length, but typically13 taken as Δt = 0.5 h), 
and τr represents the time constant for the build-up of the homeo-
static process during wakefulness. For the purposes of this paper, 
only consolidated periods of wakefulness will be considered; the 
equation for S during sleep will therefore not be discussed here.

By replacing time constant τr with an equivalent rate constant 
ρ, and substituting S with reversed sign (i.e., S < 0) for S – 1, Eq. 
(2) can be simplified to

3.  St = St–Δt exp(–ρ Δt).

Iteratively tracking this difference equation back in time to an ar-
bitrary modeling start time t0, it follows that

4.  S(t) = ξ exp(–ρ (t – t0)),

where ξ is the initial homeostatic state (i.e., at time t0). In this pa-
per, we select t0 to be the time of the most recent awakening, and 
so ξ represents the homeostatic state upon awakening.

As conceptualized by Achermann and Borbély,15 performance 
may be modeled by assuming an additive interaction of the cir-
cadian and homeostatic processes. The general equation for this 
would be

5.  P(t) = β S(t) + γ C(t) + κ,

where P is the predicted level of performance, β is a parameter for 
the relative impact of the homeostatic process on performance, 
and γ is a parameter for the amplitude of the effect of the circadian 
process on performance. The intercept parameter κ offsets the 2 
processes and thereby modulates the basal performance level. Sub-
stituting Eqs. (1) and (4) into Eq. (5), and noting that β is redundant 
with ξ (i.e., they only occur together as β ξ and may therefore be 
replaced by a single, rescaled parameter ξ), it follows that

6.  P(t) = ξ exp(–ρ (t – t0)) + γ ∑
k
 ak sin(2 k π (t – φ) / τ) + κ.

The free parameters in this performance model are ρ, γ, κ, ξ and φ. 
There is experimental evidence that the homeostatic build-up rate 
ρ,16,17 the circadian amplitude γ,6(fn.a) and the basal performance 
level as determined by κ,18 depend on individual subjects’ trait 
characteristics. These parameters will therefore be considered 
trait parameters. 

The initial homeostatic state ξ and the circadian phase angle φ 
cannot normally be considered trait parameters; they may change 
for any given individual depending on the circumstances (e.g., 
due to recent sleep loss and/or circadian phase shifting from a 
bout of shift work) and are therefore state parameters. However, 
within a consolidated period of wakefulness, the initial homeo-
static state ξ (i.e., the homeostatic state at the time of the most 
recent awakening t0) is not subject to change. Thus, the initial 
homeostatic state is an enduring condition. Although the initial 
homeostatic state cannot be inferred from population-based data, 
its enduring quality makes it otherwise indistinguishable from a 
trait for the purpose of parameter estimation with the Bayesian 
forecasting procedure. When applying that procedure to a consol-
idated period of wakefulness, therefore, the parameter ξ may be 

treated as equivalent to a trait parameter. This important property 
is implied throughout this paper whenever the term initial state 
parameter is used.

In general, the circadian phase angle cannot be considered an 
enduring condition—for many operational settings, especially 
those involving shift work or transmeridian travel, this would be 
a poor approximation of reality. However, while it is possible to 
deal with transitory states in the Bayesian forecasting procedure, 
this goes beyond the scope of the paper. The work described here 
is limited to those circumstances under which circadian phase 
angle is stable and may thus be assumed to represent an endur-
ing condition. With this qualification, circadian phase angle is not 
distinguishable from a trait for the purpose of parameter estima-
tion with the Bayesian forecasting procedure. When applying the 
procedure, therefore, the parameter φ is also an initial state pa-
rameter which may be treated as equivalent to a trait parameter.

Population Model for the Two-Process Model

As described in the introduction, the Bayesian forecasting pro-
cedure makes use of the advance characterization of inter-indi-
vidual variability in the population. In the present context, the 
procedure depends on the advance estimation of the two-process 
model parameters and their between-subjects variance in a sam-
ple of n subjects drawn from the population. It will be assumed 
that an appropriate data set is available. For illustration purposes, 
such a data set will be introduced later in this paper.

The two-process model parameters and their between-subjects 
variance can be estimated on the basis of the available data using 
the following mixed-effects regression equation:

7.  yij = Pi(tij) + εij, 

where yij represents the data for subjects i (i = 1, ..., n) at time 
points tij (with j indexing the data points), and εij stands for inde-
pendent, normally distributed residual error with mean zero and 
variance σ2. Pi is the subject-specific version of the performance 
model in Eq. (6):

8.  Pi(tij) = ξi exp(–ρi (tij – ti0)) + γi ∑k
 ak sin(2 k π (tij – φi) / τ) + κi.

Here ρi, γi, κi, ξi and φi are the subject-specific model parameters, 
and ti0 is the subject-specific modeling start time. 

To estimate between-subjects variance in the trait parameters, 
it will be assumed a priori that ρi and γi are lognormally distrib-
uted over subjects around ρ0 and γ0, respectively, and that κi is 
normally distributed over subjects around κ0. It will also be as-
sumed that there is no covariation over subjects among ρi, γi and 
κi. The assumptions about the distribution types for these “ran-
dom effects” are weak.9  It is not critical for the shape of the as-
sumed distributions to describe the data very precisely, as the ef-
fect thereof on the results of the Bayesian forecasting procedure is 
limited. Some statistical and numerical efficiency may be gained 
by explicitly modeling the covariation between pairs of random 
effects, but that issue is beyond the scope of this paper. 

The distributions of the initial state parameters ξi and φi depend 
on the conditions under which the available data were collected. 
Specifically, for the data set introduced in the next section, by de-
sign the initial homeostatic state ξ and the circadian phase angle 
φ should be approximately the same for all subjects—say, ξ0 and 
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φ0, respectively. (Later in this paper, however, ξ and φ will be 
considered uncertain for simulation purposes.)

Taken together, these assumptions, or prior distributions, can 
be translated into the following mathematical equations:

9.

ρi = ρ0 exp(νi)
γi = γ0 exp(ηi)
κi = κ0 + λi

ξi = ξ0

φi = φ0

where νi, ηi and λi are independently normally distributed with 
means of zero and variances ψ2, ω2 and χ2, respectively. Charac-
terization of the trait inter-individual variability in the population 
in the framework of the two-process model thus entails the as-
sessment of the normal distributions for νi, ηi, and λi by estimating 
the parameters ψ2, ω2 and χ2. For reference purposes, the relevant 
model parameters are recapitulated in Table 1.

Substitution of Eqs. (8) and (9) into Eq. (7) leads to the follow-
ing formulation of the mixed-effects regression equation:

10.  yij = ξ0 exp(–ρ0 exp(νi) · (tij – ti0)) + 
 γ0 exp(ηi) ∑k

 ak sin(2 k π (tij – φ0) / τ) + κ0 + λi + εij.

The parameters of this regression equation can be estimated by 
means of maximum likelihood estimation. Let the probability 
density function (pdf) of a normal distribution with mean m and 
variance s2 for a variable x be denoted as p[x; m, s2]. The likeli-
hood li of observing the data yij for a given subject i can be ex-
pressed as a function of the regression parameters, as follows:

11.  li(ρ0, γ0, κ0, ξ0, φ0, νi, ηi, λi, σ
2) =

c ∏
j
 p[yij; ξ0 exp(–ρ0 exp(νi) · (tij – ti0)) + 

γ0 exp(ηi) ∑k
 ak sin(2 k π (tij – φ0) / τ) + κ0 + λi, σ

2],

where σ2 is the variance of the residual error, and c is an (irrel-
evant) normalization constant. 

Integration over the assumed normal distributions for νi, ηi and 
λi to account for the relative probabilities of all possible values of 
these parameters yields the marginal likelihood Li:

12.  Li(ρ0, γ0, κ0, ξ0, φ0, ψ
2, ω2, χ2, σ2) =

C ∫νi

  ∫ηi

  ∫λi

  li(ρ0, γ0, κ0, ξ0, φ0, νi, ηi, λi, σ
2) 

p[νi; 0, ψ2] p[ηi; 0, ω2] p[λi; 0, χ2] dνi dηi dλi,

where the integrals each run from –∞ to ∞, and C is an (irrel-
evant) normalization constant. It follows that the likelihood L of 
observing the entire data set, for all subjects collectively, can be 
expressed as a function of the regression parameters, as follows:

13.  L(ρ0, γ0, κ0, ξ0, φ0, ψ
2, ω2, χ2, σ2) = 

 ∏
i
 Li(ρ0, γ0, κ0, ξ0, φ0, ψ

2, ω2, χ2, σ2).

Maximum likelihood estimation entails assessment of those 
parameter values that would make it maximally likely for the 
data to be observed as they were, i.e., those parameters that maxi-
mize L. This is typically done by minimizing –2 log L, which 
is equivalent to maximizing L but is easier to perform numeri-
cally.  The ensuing parameter estimates establish what is called 
the population model. Here, the population model characterizes 
the consistent changes in performance over time according to the 
two-process model, the systematic between-subjects variance 
(i.e., trait-like variability) in the parameters of the two-process 
model, and the residual within-subjects variance (i.e., error vari-
ance) in the sample representing the population.

Bayesian Forecasting with Unknown Traits and Uncertain States

Once the population model has been established, it can be used 
in the Bayesian forecasting procedure to optimize the parameters 
of the two-process model and to make subject-specific predictions 
of future performance for an individual not studied beforehand. 
Let’s indicate this individual with index “a.” The subject’s trait 
parameters are thus represented by νa, ηa and λa, and the subject’s 
initial state parameters are ξa and φa. Recasting Eq. (10) yields: 

14.  yaj = ξa exp(–ρ0 exp(νa) · (taj – ta0)) + 
 γ0 exp(ηa) ∑k

 ak sin(2 k π (taj – φa) / τ) + κ0 + λa + εaj.

Fixing ρ0, γ0, κ0, ψ
2, ω2, χ2 and σ2 at their established population 

values, the subject-specific parameter optimization task focuses 
on estimating νa, ηa, λa, ξa and φa. 

At first, when no performance data are as yet available for the 
subject, the most likely estimates for the subject’s traits are those 
that correspond to the “average” subject in the population—i.e., 
νa = 0, ηa = 0 and λa = 0. Such reasoning would not normally be 
valid for the subject’s initial homeostatic state ξa and circadian 
phase angle φa. With νa, ηa and λa fixed at zero, however, Eq. (14) 
would reduce to:

15.  yaj = ξa exp(–ρ0 (taj – ta0)) + γ0 ∑k
 ak sin(2 k π (taj – φa) / τ) 

 + κ0 + εaj,

Table 1—Summary Descriptions of the Trait Parameters 
(Distinguishing Their Fixed Effects, the Associated Subject-Specific 
Random Effects, and the Variances Thereof Across the Population) 
and Other Model Parameters (Initial State Parameters, Residual 
Error) Involved in the Bayesian Forecasting Procedure

Trait Parameters Homeostatic build-up rate ρ (fixed effect)
  ν (random effect)
  ψ2 (population variance)
 Circadian amplitude γ (fixed effect)
  η (random effect)
  ω2 (population variance)
 Basal performance level κ (fixed effect)
  λ (random effect)
  χ2 (population variance)
State Parameters Initial homeostatic state ξ (subject-specific)
 Circadian phase angle φ (subject-specific)
Residual Error Error variance σ2 (population variance)

Performance Prediction in Individuals—Van Dongen et al
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in which only ξa and φa are free parameters. With 3 performance 
measurements for the individual at hand, first estimates for the 
initial state parameters ξa and φa can generally be obtained from 
this equation. This suggests that, as a rule of thumb, Bayesian 
forecasting estimates for the subject’s model parameters may be-
gin to be reliable when the third performance measurement be-
comes available (and with every measurement thereafter). 

Let the probability density function (pdf) of a uniform distri-
bution over the interval from a to b for a variable x be denoted 
as u[x; a, b]. Assuming that the distributions represented by the 
parameters νa, ηa, λa, ξa and φa in Eq. (14) are independent of each 
other and of the noise term εaj, maximum a posteriori estimates 
for the state and trait parameters are obtained by maximizing the 
Bayesian expression

16.  la(ξa, φa, νa, ηa, λa) p[νa; 0, ψ2] p[ηa; 0, ω2] p[λa; 0, χ2]
 u[ξa; –∞, 0] u[φa; 0, τ] / La

given the subject’s available data yaj (j = 1, 2, 3, ...). Here, la is 
the likelihood function taken from Eq. (11) with ρ0, γ0, κ0 and σ2 
fixed; and La is defined analogous to the marginal likelihood in 
Eq. (12):

17.  La = C ∫νa

  ∫ηa

  ∫λa

  ∫ξa

  ∫φa

  la(ξa, φa, νa, ηa, λa)

 p[νa; 0, ψ2] p[ηa; 0, ω2] p[λa; 0, χ2] 
 u[ξa; –∞, 0] u[φa; 0, τ] dνa dηa dλa dξa dφa.

Here the integrals for νa, ηa and λa run from –∞ to ∞; and the inte-
grals for ξa and φa run from –∞ to 0 and from 0 to τ, respectively. 

The normal distribution factors in expression (16) represent 
the prior probability information about the trait parameters, as 
engendered in the population model. No such prior information 
is available for the initial state parameters, which is why they are 
assigned uniform distributions across the ranges of their possible 
values. For the purpose of maximization, the uniform distributions 
for ξa and φa cancel out; and the denominator La, being invariant to 
the free parameters (ξa, φa, νa, ηa and λa) also cancels out. As such, 
for maximization, expression (16) may be simplified to

18.  la(ξa, φa, νa, ηa, λa) p[νa; 0, ψ2] p[ηa; 0, ω2] p[λa; 0, χ2].

Maximization of expression (18), using all the available per-
formance data yaj for the subject at hand, yields the most likely 
estimatesa for the parameters ξa, φa, νa, ηa and λa. By repeating 
this maximization each time additional performance data be-
come available, the parameter estimates improve with every such 
update, converging rapidly to those that statistically optimally 
represent the individual. Consequently, the accuracy of predic-
tions for future performance, based on the updated parameter 
estimates, increases progressively. Due to first having character-
ized a sample of the population at large, this improvement in 
prediction accuracy for a previously unstudied individual occurs 
much more efficiently than would be possible if the individual-
ized predictions were attempted without the use of population 
information.9

As an additional advantage, expression (18) allows estima-
tion of how accurate the subject-specific parameter estimates and 
performance predictions actually are, via assessment of (95%) 

confidence intervals. How this is best approached depends on the 
numerical procedure used to deal with expression (18), and a de-
tailed discussion is beyond the scope of the present paper. One 
approach currently implemented is described in the next section.

Numerical Implementation

A computer program was developed for the numerical maxi-
mization of expression (18) to estimate the parameters, and for 
the assessment of 95% confidence intervals for the parameter 
estimates and performance predictions. The computer program 
was written in Matlab version 7.0 (The MathWorks, Inc., Natick, 
Massachusetts), and was run under the Microsoft Windows XP 
operating system on a 1.7 GHz Intel Pentium desktop computer. 

Expression (18) was maximized through a 5-dimensional grid 
search, which involved calculating the outcome across many 
combinations of possible parameter values and recording the 
largest outcome encountered. The parameter grid was made up 
of νa ranging from –3 to 3 in intervals of 0.5; ηa ranging from –2 
to 2 in intervals of 0.25;  λa ranging from –30 to 30 in intervals 
of 3; ξa ranging from –120 to 0 in intervals of 15; and φa ranging 
from 0 to 21 in intervals of 3 (due to the 24 h circularity of φa 
there was no need to evaluate φa at 24). The grid ranges for the 
(non-circular) parameters νa, ηa, λa and ξa were selected such that 
the probability density represented by expression (18) vanished 
toward the boundaries. To increase the computational efficiency, 
calculation of Eq. (11) as embedded in expression (18) was done 
recursively, and the irrelevant constant c in the formula was ig-
nored (i.e., set to 1). 

Recording the largest outcome encountered in the grid search 
merely resulted in crude first estimates of the parameters. To 
enhance the numerical resolution of the parameter estimates, the 
parameter grid was interpolated by a factor 4 in each dimen-
sion using piecewise cubic splines. Effectively this involved ap-
proximating the outcomes for a grid with a higher resolution 
by connecting all the values in the original grid with a smooth 
(multi-dimensional) surface. The largest outcome in the interpo-
lated grid, found close to the original maximum, was recorded 
to determine the final parameter estimates. These parameter val-
ues were then entered into Eq. (14) (minus the error term εaj) to 
yield the most probable prediction of future performance (for 
given time t).

For each performance prediction, a 95% confidence interval 
was calculated by first identifying the smallest contiguous portion 
of the (interpolated) parameter grid that captured 95% of the total 
area under the curve given by expression (18). All combinations 
of parameter values included in this portion of the grid were then 
entered into Eq. (14) to compute the corresponding predictions of 
future performance (for given time t). The minimum and maxi-
mum of the performance predictions encountered in this process 
were taken as estimates of the boundaries of the 95% confidence 
interval (which was thereby allowed to be asymmetrical). Further 
work (e.g., with Monte Carlo simulations) is needed to validate 
these estimates. 

Bayesian 95% confidence intervals for the parameter estimates 
proper were derived by constructing the marginal probability 
density functions (pdfs). These are the pdfs for every parame-
ter considered individually while accounting for the probability 
densities of the other parameters. The marginal pdf for each pa-
rameter was computed by integrating over the other 4 parameters 
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across the parameter grid. All marginal pdfs thus obtained were 
interpolated by a factor 30 using piecewise cubic splines. (This in-
volved approximating the values for a grid with higher resolution 
by connecting all the values in the original grid with an appropri-
ate, smooth curve.) The maxima of the interpolated marginal pdfs 
were identified in order to obtain more precise estimates for the 
individual model parameters. Lastly, 95% confidence intervals for 
the parameter estimates were computed by assessing the shortest 
contiguous interval capturing 95% of the area under the curve of 
each marginal pdf.19

Average prediction bias (i.e., systematic under- or over-pre-
diction) was quantified by calculating the average difference be-
tween predictions and actual observations. Furthermore, average 
prediction error (i.e., point by point deviation) was quantified 
by computing the square root of the average squared difference 
between predictions and actual observations (i.e., the root mean 
square error). 

Experimental Data and Corresponding Population Model

To illustrate the potential of the Bayesian forecasting ap-
proach, a previously established data set was employed to run 
simulations. The data were collected during a laboratory study 
involving 88 h of total sleep deprivation, as described else-
where.20 During the sleep deprivation period, a range of cogni-
tive performance outcomes was measured every 2 h, from 07:30 
until 23:30 three days later. Performance on the psychomotor 
vigilance test (PVT) was selected as the outcome measure to 
model, because of demonstrated validity and sensitivity to the 

homeostatic and circadian processes.21 The number of lapses 
(reaction times ≥ 500 ms) on the PVT was recorded as the pri-
mary outcome variable y.

Data from n = 10 subjects in the study, drawn from a popula-
tion of healthy males aged 21 to 50 years, were used to derive 
a population model based on the two-process model, as per Eq. 
(10). Figure 1 displays the data from this sample, averaged over 
subjects. Performance deteriorated across days of sleep depri-
vation in accordance with the homeostatic process (Eq. (4)), 
and varied rhythmically within each day in accordance with the 
circadian process (Eq. (1)).20 The average level of performance 
impairment reached after multiple days of total sleep depriva-
tion was considerable—it appeared to exceed the average level 
of performance impairment resulting from being legally intoxi-
cated by alcohol.22 However, there were substantial inter-indi-
vidual differences in the effects of sleep deprivation on psy-
chomotor vigilance performance, as illustrated by the inset in 
Figure 1. The bar shows the interval of ±1 standard deviation 
for systematic between-subjects variability, as determined by 
mixed-effects analysis of variance.23

The population model was assessed using Eqs. (9) through 
(13), as evaluated with the computer software NONMEM ver-
sion V (GloboMax LLC, Hanover, Maryland). Time t was ex-
pressed as cumulative clock time (in hours) with time 0 defined 
as the midnight preceding the total sleep deprivation period. 
The sleep deprivation began at 07:30, and this time point was 
used to define the modeling start time, so that t0 = 7.5 for all 
subjects. Subject selection criteria and experimental controls20 
standardized the initial homeostatic state ξ and circadian phase 
angle φ at the beginning of sleep deprivation. For the purposes 
of assessing the population model, therefore, these 2 parameters 
were considered the same for all 10 subjects in the sample. The 
circadian phase angle was relatively stable during the 88 h of 
total sleep deprivation,14 indicating that the initial state param-
eter φ represented an enduring condition under these circum-
stances. 

The parameter estimates (± standard errors) for the popula-
tion model were found to be as follows: ρ0 =  0.0350 (± 0.0156), 
γ0 = 4.30 (± 1.05), κ0 = 29.7 (± 3.7), ξ0 = –28.0 (± 4.4), φ0 = 
0.6 (± 0.2), ψ2 = 1.15 (± 0.41), ω2 = 0.294 (± 0.191), χ2 = 36.2 
(± 26.2), and σ2 = 77.6 (± 7.3). Figure 1 shows that the popula-
tion model closely matched the data as averaged over subjects. 
Not readily observed in Figure 1 is that the population model 
also matched the data of the individual subjects well, since the 
parameters of the population model were optimized relative to 
the data of the whole sample of n = 10 subjects without av-
eraging out the considerable inter-individual differences. Com-
pared to the same model without inter-individual differences, 
the population model reduced the residual error variance by a 
factor 1.64. 

The population model described here characterized the changes 
in performance during total sleep deprivation in accordance with 
the two-process model, as well as the inter-individual differences 
in the model parameters and the residual error, in a population of 
healthy males aged 21 to 50 years. This provided all the infor-
mation necessary to run simulations for the Bayesian forecasting 
procedure, in order to demonstrate the predictability of individual 
subjects’ performance in the face of a priori unknown traits and 
uncertain states.

Figure 1—Performance measurements during a laboratory study 
involving 88 h of total sleep deprivation, and population model of 
performance based on the two-process model. The solid boxes show 
the number of lapses (reaction times ≥ 500 ms) on a psychomotor 
vigilance test administered every 2 h, averaged over subjects (n 
= 10). Upwards in the graph corresponds to greater performance 
impairment. The thin curve shows the population model as plotted 
for the “average” subject. The averaged data are captured well by 
this curve. However, the averaged data do not show the considerable 
inter-individual differences throughout the sleep deprivation period. 
The bar in the inset depicts the interval of ±1 standard deviation 
for between-subjects variability in the data. Although difficult to 
illustrate graphically, these inter-individual differences are captured 
well by the population model also.

Figure 1 
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Bayesian Forecasting Simulations

Besides the 10 subjects used to establish the population model, 3 
additional subjects drawn from the same population participated in 
the total sleep deprivation study described above. These 3 subjects 
were selected to represent considerable inter-individual differences 
in performance impairment during sleep deprivation, and their data 
were set aside prospectively to run simulations with the Bayesian 
forecasting procedure. The trait parameters νa, ηa and λa for these 
subjects were not known a priori. Furthermore, even though the ini-
tial state parameters ξa and φa were approximately the same for all 
subjects due to the design of the study,20 for the purposes of simula-
tions these parameters were considered uncertain.

The objective of the first of our simulations was to make predic-
tions of the 3 subjects’ performance during total sleep deprivation, 
at 1 h intervals for up to 24 h in the future (i.e., 24 h ahead pre-
dictions); and to update the predictions using Bayesian forecast-
ing each time the next performance measurement became avail-
able. The population model parameters ρ0, γ0, κ0, ψ

2, ω2, χ2 and σ2 
remained fixed at their previously established population averages 
(see the previous section). Modeling start time ta0 was fixed at 7.5 
(i.e., 07:30, the scheduled time of awakening). Time taj was incre-
mented in 2 h steps beginning at ta0, so as to coincide with the time 
points for data collection in the sleep deprivation experiment. At 
each increment, parameter estimates were updated by maximizing 
expression (18) using the numerical approach outlined earlier. With 
the updated parameter estimates, Eq. (14) (minus the error term εaj) 
was evaluated at 1 h intervals from taj to taj + 24 in order to predict 
performance up to a 24 h prediction horizon.  

Figure 2 shows the results of the simulation, in snapshots taken 
at 8 h intervals. The 3 subjects are indicated as “A”, “B,” and 
“C.” The first snapshot (top row panels in Figure 2) occurred at 
11:30, at 4 h awake, when the third performance measurement 
was taken. Based on the rule of thumb suggested by Eq. (15), this 
is the first occasion when there may have been enough data points 
(black circles) to reasonably estimate the initial state parameters 
ξa and φa. Even at this early stage, the 24 h predictions for the 3 
subjects (solid curves) were already notably different, accounting 
with remarkable accuracy for the different performance profiles 
that would subsequently be observed in the actual measurements 
(gray circles). However, the 95% confidence intervals for the per-
formance predictions were still large. The last snapshot (bottom 
row panels in Figure 2) was taken 40 h later, well before the end 
of the 88 h sleep deprivation period, but sufficiently far along for 
the present purposes. By this time (i.e., at 44 h awake), the 24 h 
predictions had diverged substantially among the 3 subjects, as 
had the actual observations. Also, the 95% confidence intervals 
for the performance predictions were much narrower. There was 
no overlap between the 95% confidence intervals for subjects B 
and C at any of the evaluated time points (at 1 h intervals) across 
the 24 h prediction horizon (center and right bottom panels in Fig-
ure 2). This implies that at 44 h awake, the predictions for these 2 
individuals were statistically distinct, with a type I error of much 
less24 than 0.05 for every prediction time point. 

Since the sleep deprivation study took place in the past and all 
the data were already available, the simulation predictions could be 
compared directly to actual observations of performance impair-
ment. Looking at all the snapshots in succession (from top to bot-
tom through Figure 2), the performance responses to sleep depri-
vation varied systematically among the 3 individuals. The model 

predictions were progressively tailored to these subject-specific re-
sponses, and the 95% confidence intervals consistently reduced in 
size, revealing a steady increase in model precision. Of course, this 
does not mean that the predictions were highly accurate through-
out. Occasionally, performance at specific time points was consid-
erably under- or over-predicted. However, the observations at those 
time points typically stood out from the surrounding data points, 
and did not fit the expected profile of gradual change over time in 
accordance with the homeostatic and circadian processes. Whether 
these data points represent outliers or whether they may reflect 
systematic aspects of performance regulation not captured by the 
two-process model is difficult to establish. Ultimately, the Bayes-
ian forecasting procedure can only predict performance as well as 
allowed by the comprehensiveness of the biomathematical model 
in which it is implemented, and the quality of the data it uses to 
update the model parameters. Given these caveats, the simulation 
demonstrated a high degree of success in predicting performance 
24 h ahead during laboratory sleep deprivation.

Figure 3 shows the evolution of the model parameter estimates 
with every step in the simulation, from 4 h awake up to 70 h 
awake, for subject “A.” The figure illustrates that the 3 trait pa-
rameters as well as the 2 initial state parameters could be esti-
mated with increasing precision as more data became available 
over time. However, this “sharpening up” of the parameter es-
timates did not always occur in a gradual fashion. Occasional 
abrupt changes reflected variability in how informative the newly 
acquired performance data were for the parameters in question. 
After about 50 h of wakefulness, there was hardly any new infor-
mation in the performance data, and the parameters converged on 
their best estimable values. The estimates of the trait and initial 
state parameters for each of the 3 subjects at the end of the simu-
lation, after 88 h of total sleep deprivation, are shown in Table 2. 
For comparison, the population averages of the trait parameters 
were zero by definition, and the population averages of the initial 
state parameters were ξ0 = –28.0 and φ0 = 0.6.

It is instructive to assess the performance prediction accuracy 
of the Bayesian forecasting procedure relative to that of the popu-
lation average model (i.e., with the traits and initial states fixed at 
the estimates obtained when establishing the population model). 
The latter is illustrated in Figure 4 for a snapshot taken at 44 h 
of wakefulness. A visual comparison of this simulation with the 
one in Figure 2 (last row panels) suggests that using the popu-
lation average model had limited consequences for subject “A” 
(because this subject’s response to sleep deprivation turned out to 
be approximately average), but resulted in substantial over-pre-

Table 2—Estimates of the Trait and Initial State Parameters for the 
3 Individual Subjects, as Converged on After 88 h of Total Sleep 
Deprivation in Computer Simulations Starting at Awakening

 Trait Parameters State Parameters
Individual ν η λ ξ φ
A 0.12 0.75 2.8 –44.5 0.0
B –2.37 –0.44 –3.1 –30.0 3.3 
C 0.88 –0.13 3.5 –39.5 –2.8*

*Even though circadian phase angle φ was estimated in the range 
from 0 to 24, it is shown here on a scale from –12 to 12 to facilitate 
comparison among individuals.
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Figure 2 
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Figure 2—Simulation using the Bayesian forecasting procedure to predict performance over time for 3 individuals exposed to acute total sleep 
deprivation. Each column of panels represents a different individual. Subject “A” exhibited a fairly average response to sleep deprivation (cf. 
Figure 1); subject “B” displayed considerable resistance to the effects of sleep deprivation; and subject “C” had relatively high vulnerability to 
performance impairment due to sleep deprivation. However, these subject-specific characteristics were not clear in advance—in this simulation, 
the trait parameters ν, η and λ were assumed a priori unknown, and the initial state parameters ξ and φ were considered a priori uncertain as well. 
The first row of panels shows the performance predictions for each of the 3 individuals upon acquisition of the third performance measurement, at 
4 h awake (11:30 clock time). The black circles show the number of lapses (reaction times ≥ 500 ms) on a psychomotor vigilance test administered 
every 2 h up to that time point. The thick curve shows the psychomotor vigilance performance predictions for the subsequent 24 h period. The 
thin vertical lines display the corresponding 95% confidence intervals (in 1 h steps). For comparison, the gray circles show the actual performance 
measurements during the 24 h prediction period. (Since this was a simulation based on data acquired previously, these observations were already 
known, even though they were not yet made available to the Bayesian forecasting procedure.) Note that any data points that visually seem to be 
missing have the prediction curve right on top of them. The second row of panels shows the situation 8 h later, when 4 additional performance 
measurements were available, and the model parameters had been updated accordingly by the Bayesian forecasting procedure. The third through 
sixth rows show the situation in further 8 h increments. 
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diction of performance impairment for subject “B” and under-pre-
diction of performance impairment for subject “C.” The average 
prediction bias at 44 h awake for the 3 subjects combined was 
–4.4 lapses, and the average prediction error was 16.3 lapses. In 
contrast, for the simulation with the Bayesian forecasting proce-
dure (Figure 2), the average prediction bias at 44 h awake was 
only –0.2 lapses, and the average prediction error was 8.0 lapses. 
These numbers demonstrate the improvement achieved by using 
the Bayesian forecasting procedure to predict performance under 
conditions of unknown traits and uncertain states.

Because the 3 subjects set aside for simulations were taken 
from the same study as the 10 subjects used to establish the popu-
lation model, their initial homeostatic and circadian state param-
eters may have been relatively close to the population averages. 
Indeed, the parameter values at the end of the simulation (Table 
2) confirmed this. To rule out that our evaluation of the Bayes-
ian forecasting procedure under conditions of state uncertainty 
constituted a poor test because of this, another simulation was 
run similar to the first one (Figure 2), but starting at a different 
homeostatic state. This was accomplished by ignoring the first 24 
h of sleep deprivation and the performance data collected during 
this period, and beginning the simulation at ta0 = 31.5 (i.e., 07:30 
of the second day of sleep deprivation). All other aspects of the 
simulation were kept the same. 

Figure 5 shows the results of this new simulation for subject “A,” 
in snapshots taken at 8 h intervals. In terms of time spent awake, the 
top panel in Figure 5 corresponds to the fourth panel in the left col-
umn of Figure 2—both represent the situation at 28 h awake. Since 
the performance data acquired during the first 24 h of wakefulness 
were ignored in the new simulation, however, the 24 h performance 
predictions made at 28 h awake were slightly different, and the 95% 
confidence intervals were much larger. Still, over time (from top 
to bottom through Figure 5), the Bayesian forecasting procedure 
displayed the same behavior, progressively tailoring the predictions 
to the subject-specific responses with the 95% confidence intervals 
consistently reducing in size. At 44 h of wakefulness (i.e., the third 
snapshot), the average prediction bias across all 3 subjects was –1.5 
lapses, and the average prediction error was 8.9 lapses—not much 
different from the first simulation (Figure 2) and still much bet-
ter than the population average model simulation (Figure 4). The 
estimates of the trait and initial state parameters for each of the 3 
subjects at the end of the simulation, after 88 h of total sleep depri-
vation, are shown in Table 3. By and large, these estimates are close 
to those obtained in the first simulation (Table 2). These results 
confirm that the Bayesian forecasting procedure, as extended by us 
from the trait-only procedure presented by Olofsen and colleagues,9 
can handle the a priori uncertainty of initial states well.

Critical for the usefulness of the Bayesian forecasting procedure 
in operational settings is its ability to deal with sparse data, col-
lected infrequently at intervals of potentially unequal duration. To 
examine this property, another simulation was conducted, similar 
again to the first one (and starting at ta0 = 7.5), but using only the 
performance measurements of 8 (instead of 23) randomly selected 
time points to updated the model parameters. Figure 6 shows the 
results of this simulation for subject “A,” again in snapshots taken 
at 8 h intervals. In terms of time spent awake, the top panel in Fig-
ure 6 corresponds to the second panel in the left column of Figure 
2—both represent the situation at 12 h awake (at 4 h awake there 
were not enough data points yet to expect reasonable estimates for 
the initial state parameters). 

Figure 3—Bayesian forecasting estimates of the trait and initial state 
parameters for subject “A”. This figure illustrates the optimization 
process for the estimates of trait parameters ν, η, and λ and initial 
state parameters ξ and φ during the simulation shown in Figure 2. 
The panels display the parameter estimates (diamonds) with 95% 
confidence intervals (vertical bars), as updated upon the availability 
of new performance measurements at 2 h intervals (beginning with 
the third measurement at 4 h of wakefulness). Note that even though 
circadian phase angle φ was estimated in the range from 0 to 24, it is 
plotted here (last panel) on a scale from –12 to 12 to facilitate visual 
interpretation. The confidence intervals for the first two estimates 
of φ extend below the bottom of the panel, and are continued at the 
top of the panel because of the circular nature of this parameter. For 
reference purposes, the open diamonds mark the parameter estimates 
that were underlying the performance predictions for subject “A” as 
shown successively in the 6 panels in the left column of Figure 2.

Figure 3 

 50 

Performance Prediction in Individuals—Van Dongen et al



SLEEP, Vol. 30, No. 9, 2007 1138

The scarcity of data in the simulation of Figure 6 caused the 24 
h ahead prediction curve at 12 h awake to be notably different than 
in the first simulation (Figure 2). The 95% confidence intervals 
were larger as well. However, as the simulation progressed (from 
top to bottom through Figure 6), the 24 h predictions became very 
similar to those seen in the first simulation. At 44 h awake, the 
average prediction bias across all 3 subjects was –0.5 lapses, and 
the average prediction error was 8.5 lapses—again similar to what 
was found in the first simulation (Figure 2). The estimates of the 
trait and initial state parameters for each of the 3 subjects at the 
end of the simulation, after 88 h of total sleep deprivation, are 
shown in Table 4. These are also close to the estimates obtained 
in the first simulation (Table 2). Thus, the main effect of the data 
being sparse appeared to be that the 95% confidence intervals re-
duced in size less rapidly, but the Bayesian forecasting procedure 
did not lose its ability to predict.

Repeated Use of Bayesian Forecasting

After the Bayesian forecasting procedure has been applied to 
make performance predictions for a given individual, the opti-
mized values for the trait parameters (but not the initial state pa-
rameters) can be used again if predictions are needed for this same 
individual on another occasion. Specifically, the prior normal dis-
tributions for the trait parameters νi, ηi and λi in Eq. (18) can be 
replaced by the pdfs obtained for these parameters at the end of 
the previous application of the Bayesian forecasting procedure. 

This way, the data acquired for an individual during scenarios in 
the past continue to contribute to the precision of the performance 
predictions for that individual in the future. 

To examine this idea, a simulation was run using data from a 
different experiment (study 2 in Van Dongen et al25). A person was 
exposed to 36 h total sleep deprivation in the laboratory on 2 oc-
casions. Laboratory circumstances were similar to those encoun-
tered in the other simulations. However, the 36 h sleep depriva-
tions began at 10:00, and this time point was used to define the 
modeling start time for each sleep deprivation period (i.e., t0 = 10). 
Psychomotor vigilance testing occurred at 2 h intervals, beginning 
at 10:30 (t = 10.5) during both sleep deprivations. The performance 
data were very similar between the 2 sleep deprivations (see Figure 
7), as was anticipated given that performance responses to sleep 
deprivation are overall trait-like.6 It was expected that, despite the 
relatively small number of data points available, the Bayesian fore-
casting procedure would achieve greater prediction precision more 
rapidly for the second exposure to sleep deprivation when utilizing 
the trait information obtained in the first exposure.

The results of the simulation are shown in Figure 7. The first col-
umn of panels shows the results of Bayesian forecasting for the first 
sleep deprivation period. The second column of panels shows the 
results for the second sleep deprivation period without utilizing the 
trait information acquired in the first. Although some data points 
were missing in the first sleep deprivation session, the prediction 
results and corresponding 95% confidence intervals were nearly 
identical. The average prediction bias was –4.3 lapses for the first, 
and –6.0 lapses for the second sleep deprivation; and the average 
prediction error was 11.2 lapses for the first, and 11.0 lapses for the 
second sleep deprivation. The third column of panels shows the 
improvement in the predictions for the second sleep deprivation 
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Figure 4—Simulation using the population model based on the two-process model to predict performance over time, without employing the Bayesian 
forecasting procedure. Details are the same as for the last row of panels (awake 44 h) in Figure 2, except that the state and trait parameters of the 
performance prediction model remained fixed at their population averages and were not updated based on subject-specific performance information 
acquired during the sleep deprivation period. As a consequence, the performance predictions were equal for each individual, and there was no flexibility 
in the level or shape of the 24 h predictions curves. Note also that no suitable equivalent was available for the 95% confidence intervals.

Figure 4 
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Table 3—Estimates of the Trait and Initial State Parameters for 
the 3 Individual Subjects, as Converged on After 88 H of Total 
Sleep Deprivation in Computer Simulations Starting 24 H After 
Awakening.

 Trait Parameters State Parameters
Individual ν η λ ξ φ
A 0.47 0.76 0.0 –44.5 0.0
B –2.05 –0.32 –3.9 –31.0 3.2 
C 1.38 0.11 3.4 —* –3.0

*ξ could not be estimated from subject C’s data after 24 h of 
wakefulness, as this parameter no longer had a noticeable effect on 
the subject’s performance predictions.

Table 4—Estimates of the Trait and Initial State Parameters for the 
3 Individual Subjects, as Converged on After 88 H of Total Sleep 
Deprivation in Computer Simulations with Sparse Data.

 Trait Parameters State Parameters
Individual ν η λ ξ φ
A 0.48 0.58 2.6 –48.0 0.0
B –1.97 –0.25 –4.1 –30.5 5.6 
C 0.35 –0.17 0.4 –26.0 2.6



SLEEP, Vol. 30, No. 9, 2007 1139

when employing the pdfs obtained for the trait parameters (but not 
the initial state parameters) at the end of the first sleep deprivation. 
Using these pdfs as prior information, the average prediction bias 
for the second sleep deprivation was reduced to 0.5 lapses, and the 
average prediction error was reduced to 6.9 lapses. 

The improvement stemmed from the fact that the trait and ini-
tial state parameters converged more rapidly to the values best 
characterizing the individual at hand, due to the more informa-
tive prior distributions for the trait parameters. As a result, the 
performance predictions became more accurate, and the 95% 

Figure 5—Simulation using the Bayesian forecasting procedure to 
predict performance over time for subject “A,” starting at a later time 
during the sleep deprivation period. Details are the same as for Figure 
2 (left column panels), except that here the initial homeostatic state 
was different because the simulation was started at 24 h awake (but 
for the purpose of the simulation the amount of prior wakefulness 
was considered not known). Timewise, the top panel in this figure 
corresponds to the fourth panel in the left column of Figure 2. The 
second through sixth panels display the updated 24 h performance 
predictions as time passed, shown in 8 h increments. Note that there 
were only 9 actual observations (gray circles) to compare to in the 
last panel, because data acquisition stopped at 88 h awake in the 
laboratory experiment. 

Figure 5 
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Figure 6—Simulation using the Bayesian forecasting procedure to 
predict performance over time for subject “A,” under conditions of 
sparse data availability. A large portion of the original data set (see 
Figure 2, left column panels) was discarded here, so as to simulate that 
the available performance measurements occurred infrequently—at 
random, unequally spaced intervals. Other details are the same as for 
Figure 2, except that the first panel in that figure (awake 4 h) is not 
repeated because only one data point was available during the first 4 
h of wakefulness in this simulation. 

Figure 6 
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confidence intervals were consistently smaller, than without the 
use of the information from the first exposure to sleep deprivation 
(compare the second and third columns in Figure 7). This illus-
trates that the Bayesian forecasting procedure can become more 
effective when used repeatedly. 

DISCUSSION

This paper demonstrated the usefulness of the Bayesian fore-
casting procedure for predicting cognitive performance impair-
ment with a biomathematical model, in particular the two-process 
model, in the face of unknown trait characteristics and uncertain 
initial states in individual subjects. Prospective computer simu-
lations were run using data from the psychomotor vigilance test 
(PVT), a marker of changes in cognitive performance mediated 
by the homeostatic and circadian processes,21 as recorded during 
a laboratory-based study of total sleep deprivation. The simula-
tions showed that biomathematical model parameters converged 
rapidly to the values that best characterized the individuals con-
cerned, resulting in substantially improved performance predic-

tions relative to the original version of the model. The Bayesian 
forecasting procedure also estimated 95% confidence intervals 
for the parameter estimates and for performance prediction ac-
curacy. Over time, the 95% confidence intervals for performance 
shrunk, both in absolute size and relative to the differences in 
performance predictions among individuals, resulting in statisti-
cally relevant differentiation among subjects—i.e., successfully 
individualized performance predictions. Numerical computations 
were sufficiently fast on a Pentium-driven desktop computer to be 
feasible in real time in operational environments (even for keep-
ing track of multiple individuals working in small teams).b Thus, 
the work presented here provides the first solution to some of the 
most significant challenges in the development of biomathemati-
cal models of performance for operational use4,5: 

• performance prediction for individuals (instead of groups) 
in the face of a priori unknown trait inter-individual 
variability; 

• performance prediction for individuals in the face of uncer-
tain initial states;

• quantification of prediction accuracy.
Performance Prediction in Individuals—Van Dongen et al

Figure 7—Simulation using the Bayesian forecasting procedure to predict performance over time for a single individual exposed to acute total 
sleep deprivation twice. The first column of panels shows the simulation for the first time the individual underwent 36 h sleep deprivation; 
graphical details are the same as for Figure 2. (Note that the 24 h ahead predictions displayed in the bottom panel extend beyond the 36 h period 
of sleep deprivation.) The second column of panels shows the simulation for the second time the individual was exposed to 36 h sleep deprivation, 
retaining no information from the first exposure. The third column of panels shows the simulation for the second exposure to sleep deprivation 
again, but—as denoted by the asterisk—the estimates for the trait parameters at the end of the first exposure to 36 h sleep deprivation were used as 
prior information this time (although the initial state parameters were still considered a priori uncertain). 

Figure 7 
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The Bayesian forecasting procedure as implemented in the 
two-process model possesses broad generalizability, in that it can 
be used to predict waking performance in any scenario and in 
any population for which the two-process model proper is valid. 
Thus, the procedure should work in total sleep deprivation, acute 
sleep restriction, acute sleep displacement, and nap sleep scenar-
ios.26 Furthermore, besides healthy adults, it may work in other 
populations such as adolescents,27 people with depression,28 and 
patients with seasonal affective disorder.29 Although it is impor-
tant to establish a population model for the target population, it 
is not necessary to assess the population model under the same 
circumstances as those for which the Bayesian forecasting will be 
used. For example, a population model established in a nap sleep 
scenario should be usable as a basis for Bayesian forecasting in a 
sleep displacement scenario. The total sleep deprivation scenario 
considered in this paper does not yet offer full generalizability, 
though, because the data set does not allow estimation of the rate 
of dissipation for the homeostatic process during sleep (which 
could be overcome by including performance data from the re-
covery days following sleep deprivation20). Otherwise, the ver-
satility of the Bayesian forecasting procedure is not bounded by 
the circumstances associated with the population model, as long 
as the procedure is applied in accordance with the scope of the 
underlying biomathematical model, and the individuals for which 
performance is being predicted are part of the same population as 
the sample that yielded the population model.

The validity of the two-process model as used to predict per-
formance is limited, primarily, to short-term scenarios with acute 
sleep-related interventions. While this covers a wide range of 
operationally relevant scenarios, several common situations are 
outside the scope of the two-process model, such as chronic sleep 
restriction,30 circadian phase shifting,31 and use of pharmaco-
logical fatigue countermeasures.32 The effect of sleep inertia on 
cognitive performance immediately after awakening33 is also not 
captured by the two-process model. Various adjustments have 
been considered to overcome these limitations.15,34,35 Furthermore, 
other models have been developed to push the envelope on per-
formance prediction.2 The Bayesian forecasting procedure may 
be implemented in the framework of such alternative models as 
well, following the same general approach as laid out in this pa-
per. Most current biomathematical models of performance have 
more parameters than the two-process model, however, which 
may increase the number of performance measurements needed 
to obtain reliable subject-specific parameter estimates and may 
also increase the size of the 95% confidence intervals. Even so, 
with Bayesian forecasting, any available performance model may 
be utilized to make performance predictions for individuals in the 
face of unknown traits and uncertain states.

This paper builds on the recent work by Olofsen and col-
leagues,9 in which Bayesian forecasting was already applied to 
optimize subject-specific trait parameters. The present work ex-
tends this effort by for the first time including initial state parame-
ters in the parameter optimization process. Initial state parameters 
can be treated as trait parameters in the context of Bayesian fore-
casting if they represent enduring conditions (i.e., if their values 
may be assumed stable over the time period for which predic-
tions are made). However, for initial state parameters, unlike trait 
parameters, the optimization process does not benefit from prior 
information contained in the population model. Moreover, if pre-
dictions are needed for individuals who were subjected to Bayes-

ian forecasting before, then the previously optimized values of 
the individuals’ trait parameters may be reused to obtain more ac-
curate predictions with fewer data points (see Figure 7)—but this 
Bayesian property does not transfer to the initial state parameters. 
Improved prior information about the initial state parameters may 
be acquired by other means, though. For instance, actigraphy 
could be used to track sleep history, and could yield probability 
estimates for the initial homeostatic state ξ in lieu of the assumed 
uniform distribution in expression (16).

The assumption of enduring initial states implies that the use 
of the Bayesian forecasting procedure described here is restricted 
to scenarios in which there are no unexpected changes in initial 
states—no homeostatic discontinuities (e.g., due to unreported 
naps) and no circadian phase shifts (e.g., due to exposure to bright 
light). Considerable work has been done to derive equations for 
the modeling of circadian phase changes (and even temporary de-
viations from the limit cycle process determining circadian ampli-
tude).36 Incorporation of such equations may allow substitution of 
the initial state parameter for circadian phase angle by a few trait 
parameters, thereby lifting the assumption of enduring circadian 
phase angle in the present work. Other approaches to maintaining 
performance prediction accuracy under conditions involving dy-
namic circadian phase changes can be envisioned as well. One such 
approach could entail the development of procedures relying on 
on-line measurements for estimating circadian phase. Current ef-
forts, based in part on earlier work by our group,37 focus on expand-
ing the Bayesian performance prediction framework that way.

Implementation of the Bayesian forecasting procedure does not 
preclude performance prediction in the absence of any subject-
specific data, but the underlying (group-average) biomathemati-
cal model is only outperformed when at least a few performance 
measurements are available for the individual at hand. However, 
in operational environments, it may not be possible or practical 
to interrupt the ongoing tasks in order to administer performance 
tests. Automatically measured embedded performance measures, 
such as lane deviation to track driver performance,38 may offer a 
solution to this problem. An additional advantage of using em-
bedded performance measures is that they may be directly rele-
vant to the demands of the operational setting. Note that the same 
performance measure should be used for assessing the population 
model as for applying the Bayesian forecasting procedure. This 
is important because inter-individual differences in vulnerability 
to sleep loss appear to be dependent on the type of performance 
being measured.6

Although there is no need to know the origin of the inter-in-
dividual differences in responses to sleep loss when applying 
the Bayesian forecasting procedure, the accuracy of predictions 
may be further improved by inclusion of relevant covariates like 
a subject’s age.9 As such, research aiming to identify easily mea-
surable biomarkers of inter-individual differences in performance 
impairment from sleep loss should be a priority.7 Even so, the 
Bayesian forecasting procedure presented in this paper is power-
ful and robust enough to be considered for validation in selected 
operational settings. It is important to establish population mod-
els for such settings first—the distribution of the trait parameters 
may be different depending on the population involved, and the 
error variance (i.e., the estimate for σ2) may vary from one setting 
to another as well. Once proven effective in the field, the Bayes-
ian forecasting procedure can be a key component of a reliable 
and efficient sleep/wake-based fatigue risk management tool—

Performance Prediction in Individuals—Van Dongen et al
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predicting cognitive performance impairment, and possibly even 
accident risk,39 at the level of individuals. The implications for 
productivity, safety and well-being, and ultimately for the econo-
my and for society at large,40 could be extensive.

FOOTNOTES

a This estimation process is closely related to maximum likeli-
hood estimation, which is the generally preferred framework 
in the context of Bayesian statistics.19 It is also possible, but 
technically more difficult, to derive a Bayesian forecasting 
algorithm based on least squares estimation. Under condi-
tions of independent, normally distributed residual error, the 
resulting parameter estimates should be the same. 

b For the specified grid size and interpolation factors, each pre-
diction step took less than one minute to compute. With more 
sophisticated maximization algorithms and other numerical 
refinements, it should be possible to reduce the computation 
time to mere seconds per prediction step on present-day stan-
dard desktop computers. 
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